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Note 

Wall-Compatibility Condition for the 

Solution of the Navier-Stokes Equations 

1. INTRODUCTION 

Discrete numerical methods for the solution of the Navier-Stokes equations 
usually need not only the classic solid-wall boundary conditions but also a value for 
the density at the wall. The use of a compatibility condition found from the 
continuity equation is proposed to find this value. An application to Couette flow is 
made. 

Consider the formulation of a numerical solution of the Navier-Stokes equations 
for two-dimensional compressible laminar or Reynolds-averaged turbulent flow (for 
convenience Cartesian coordinates are used in this discussion). The momentum 
equations are of second order in x and y for both the velocity components u and u. 
The same is true for the energy equation in either formulation, for instance, for the 
static temperature T. 

The consequences for the boundary conditions are that for each of the dependent 
variables U, u, T two boundary values have to be prescribed. If the flow past a solid 
body is being considered, boundary values have to be prescribed on the body surface, 
and in most cases, at an infinite distance from the surface. The continuity equation 
serves for the determination of the density p. Because this equation is of first order in 
x and y, only one boundary value can be prescribed for it in each direction, and that 
only away from the body surface. 

A “Gedanken”-experiment gives the same result. At the body surface the nonslip 
conditions for both u and v are usually valid; for the temperature a certain value of T 
can be enforced by heating or cooling. Either a zero (insulated surface) or a nonzero 
heat flux can be prescribed giving a boundary value of the form aT/ay. In general, 
however, no way exists physically to enforce a value of the density or the pressure, 
nor gradients of either, at the surface. The values of these quantities at a given point 
on the body surface, of course, depend on the body configuration, the free-stream 
condition, and the thermal wall conditions. They can be changed only by changing 
the free-stream conditions of p or p, provided body configuration and flow situation 
remain fixed.. 

The foregoing discussion was somewhat simplified in order to clarify the physical 
situation and its consequences with regard to the necessary boundary conditions. In 
particular, the characteristic properties of the equations are not governed completely 
by the fact that second-order derivatives are present. For example, the omission of the 
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terms 8*/8x* does not necessarily render the system of (steady state) equations 
parabolic, because the pressure field in most cases determines the characteristic 
properties of the flow (see, i.e., [I]). 

2. COMPATIBILITY CONDITION FOR THE DENSITY AT THE WALL 

In numerical solutions for the Navier-Stokes equations boundary values for the 
density p or the pressure p are often introduced at the wall (see, i.e., [2, 31). This is 
done for reasons connected with the formulation of the solution algorithm. 

A popular choice is a zero pressure gradient normal to the wall directly at the wall, 
similar to boundary layer flow. As discussed in the preceeding section no boundary 
condition for p or p ought to be prescribed at the wall for physical reasons. A zero 
pressure gradient normal to the wall, however, is not a bad approximation as long as 
the Reynolds number is high, so that a boundary layer exists, and as long as this 
boundary layer is neither separated nor leaving the surface (as, e.g., at the trailing 
edge of an airfoil or of a wing). In the latter cases an interaction takes place, which is 
rather strong if the flow is separating, and rather small if the flow smoothly leaves the 
trailing edge. In both cases, however, the pressure gradient at the wall deviates from 
zero. 

In both cases, too, the interaction strongly influences the drag of the body, because 
it gives rise to the pressure drag. This part of the drag, which is to be distinguished 
from the pure friction drag, is made up by the difference of the two large pressure 
forces at the front part and the rear part of the configuration. Therefore the pressure 
field has to be computed to high accuracy if the drag is to be computed correctly. 
From these onsiderations it follows that an accurate handling of the computation 
problem at the surface is desirable. If the need for a value of p or p at the surface 
exists, only a compatibility condition can serve it without constraining the solution. 

Such a condition can be found from the momentum equation in the y-direction at 
the wall (again for convenience Cartesian coordinates are used; for general coor- 
dinates see [4]): 

(1) 

The use of this compatibility condition (as, e.g., in [ 5 J) is hampered by the fact that 
second-order derivatives (mixed and nonmixed) have to be computed numerically 
with one-sided difference formulae, which leads to large inaccuracies. Incidentally, 
relation (1) for large Reynolds numbers leads to the zero pressure gradient approx- 
imation discussed above, because from boundary-layer considerations it can be seen 
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This, however, is not a direct consequence of the so-called thin-layer approximation 
of the Navier-Stokes equations [4]. 

A more natural compatibility condition than Eq. (1) can be found from the 
continuity equation, if, as is usually done, the problem is treated as unsteady with the 
steady result found asymptotically for t + co. This compatibility condition in form of 
the continuity equation at the wall reads 

3P JV 

at Y--O =-pay ,,Eo’ 
(3) 

or in terms of the pressure for a perfect gas (note that for prescribed heat flux 
dT/i% # 0 in the transient phase), 

By using this compatibility condition only lirst-order derivatives have to be 
computed. For t+ co-steady state-each term reduces to the familiar steady state 
condition, 

3. APPLICATION 

The above compatibility condition was used in a computation of the plane Couette 
flow. The method [5] was employed with the changes necessary to implement this 
condition. Of course, the compatibility condition (3) must be employed at both the 
fixed (h/y = 0) and the moving (y/h = 1) wall. The reason for this is that, in this 
particular case, the mass content of the slit is fixed once and for all with the initial 
density profile. In contrast to an outer-flow case, where the free-stream value for p 
has to be specified, not even one boundary value of p can be specified here. 

The computation was made for a slit width of h = 0.3048 . 10m5 m, a Mach 
number of the moving wall M, = 3, a temperature of the moving wall T, = 293.16 K, 
a temperature of the fixed wall To = 0.5 . T,, a reference pressure pref = 101600 Pa, 
and a reference density of pref = 1.207 kg/m3. The transport properties were assumed 
to be constant with p = pl, k = k, . The results (dt = 0.196, steady state after 800 
time steps, Ay = 0.05 h) are given in Fig. 1. Steady state was considered to be reached 
when the largest root mean square norm of the dependent variables dropped below 
10m5. The exact solution of [6] was recovered with a maximum relative error of less 
than 0.3 percent for the velocity and less than 0.4 percent for the reduced temperature 
[ 71. The initial mass content with p =pref= const. in the slit is fully conserved. 
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FIG. 1. Results of Couette-flow computations, M, = 3. 

During the transient phase the pressure gradient dp/dy and hence the velocity 
component u, of course, are nonzero. 

4. CONCLUSIONS 

On solid walls no boundary values can be prescribed, in general, for the density p 
or the pressure p. If for a numerical algorithm values of p or p are needed at the wall, 
they can be computed by means of a compatibility condition found from the 
continuity equation. This holds, however, only for unsteady transient and unsteady 
problems. This compatibility condition has the advantage over the compatibility 
condition arising from the normal momentum equation in that it contains only lirst- 
order derivatives. 

The application to the Couette problem has shown that high Mach-number cases 
with and without insulated walls can be computed [7]. For both walls insulated, of 
course, no steady state solution exists. Other applications are presently in progress. 
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